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Abstract: Effective data preprocessing is crucial in time series forecasting, as it enhances model performance by ad-
dressing data inconsistencies and scaling issues. Traditional forecasting models often rely on simple scaling
techniques like StandardScaler to normalize data, but these methods are sensitive to outliers and implicitly
assume a normal distribution, which can limit their effectiveness in real-world data. In this work, we pro-
pose an innovative approach that integrates multiple statistical preprocessing techniques, including logarith-
mic, Box-Cox, Yeo-Johnson, square root, and differencing, directly into the state-of-the-art model PatchTST
(channel-independent patch time series Transformer) for time series forecasting. To our knowledge, this is
the first time such comprehensive data preprocessing techniques have been added to a transformer model.
By addressing issues like skewness, non-stationarity, and heteroscedasticity, our enhanced PatchTST achieves
notable improvements in forecast accuracy. Experiments reveal substantial reductions in errors by 38% for
the single target variable and 24% for all variables, underscoring the potential of statistical preprocessing in
transformers.

1 INTRODUCTION

Time series forecasting is fundamental in many ap-
plication domains, including finance, climate, epi-
demiology, traffic, and bioinformatics (Mudelsee,
2019; Andersen et al., 2005; Dastjerdi et al., 2022).
The ability to accurately model temporal patterns
has direct implications for operational efficiency and
strategic decision-making in industries. Recent ad-
vances in deep learning have led to the adoption of
transformer-based architectures, which leverage self-
attention mechanisms to model long-range dependen-
cies and capture complex temporal behaviors (Nie
et al., 2022). Unlike traditional autoregressive mod-
els or recurrent neural networks, transformers excel at
processing sequential data in parallel while maintain-
ing sensitivity to temporal context. However, their
performance is heavily influenced by the statistical
properties of the input data, which are often non-ideal
in real-world scenarios.

Real-world temporal data, such as sensor mea-
surements, economic indicators, or disaster records,
frequently exhibit the following.

1. Non-Stationarity: Time-varying statistical prop-
erties (e.g., mean, variance) obscure temporal
patterns and degrade the generalizability of the
model (Hyndman, 2018).

2. Skewness: Asymmetric distributions bias model
training towards dominant trends, suppressing

rare but critical events (Box and Cox, 1964).

3. Heteroscedasticity: The instability of the varia-
tion over time complicates the optimization as the
models struggle to balance the error contributions
between scales (Engle, 1982).

Due to these fundamental challenges in deep
learning models, time series data often face a myriad
of issues, like distribution shifts between training and
inference phases, which cause models to learn spuri-
ous correlations rather than true causal relationships.
Varying scales and variances create irregular loss sur-
faces, leading to unstable gradient updates and sub-
optimal convergence (Goodfellow, 2016). Moreover,
models trained on normalized historical data often fail
to generalize to future methods with differing statisti-
cal characteristics (Quiñonero-Candela et al., 2022).

To address these challenges, preprocessing is im-
portant for aligning the raw data with the assump-
tions of the model. Simple normalization techniques
such as StandardScaler (zero mean, unit variance) are
widely adopted in deep learning (Pedregosa et al.,
2011) due to their computational efficiency and com-
patibility with gradient-based optimization. However,
these methods fall short when it comes to handling
the complex statistical challenges inherent in time se-
ries data. They are highly sensitive to outliers because
they do not adjust for extreme values and assume that
the data are normally distributed, an assumption that
does not hold for skewed datasets. This limitation mo-



tivates the use of advanced transformations rooted in
statistical theory.

Traditional statistical preprocessing techniques
explicitly target non-stationarity and heteroscedastic-
ity. Some examples of these methods that have been
used widely in current state-of-the-art (SOTA) lit-
erature are the Box-Cox Transformation (Box and
Cox, 1964); a powerful transformation that stabilizes
variance and induces normality in positively skewed
data, Yeo-Johnson Transformation (Yeo and Johnson,
2000); which extends Box-Cox to handle zero and
negative values, critical for domains like energy de-
mand forecasting (Bergmeir et al., 2018), Seasonal
differencing to remove periodic trends to achieve sta-
tionarity. Statistical models such as Seasonal Au-
toRegressive Integrated Moving Average (SARIMA)
leverage techniques like logarithmic transformations,
differencing, and seasonal differencing to enhance
forecast accuracy by stabilizing variance, removing
trends, and accounting for seasonal patterns. As a
result, these models tend to outperform ARIMA and
ARMA approaches. These transformation techniques
serve as foundational tools in traditional forecast-
ing frameworks, including SARIMA, ARIMA (Box
et al., 2015) and Exponential Smoothing (ETS) (Hyn-
dman and Khandakar, 2008). Numerous studies have
demonstrated the effectiveness of these methods in
time series forecasting (Hyndman, 2018; Salles et al.,
2019).

Despite their clear benefits, these preprocessing
techniques are rarely integrated into modern deep
learning frameworks. Instead, researchers typically
rely on basic normalization methods (e.g., Standard-
Scaler or MinMaxScaler) that do not fully address is-
sues particular to statistical challenges in time series
data. Recent work by (Bandara et al., 2020) shows
that the integration of Box-Cox transformations into
neural architectures significantly improves the accu-
racy of the forecast for non-stationary retail sales data.

We theorize that integrating domain-agnostic
statistical preprocessing with modern transformer ar-
chitectures could improve forecast performance while
maintaining model generality. This work extends
channel-independent transformer model through
preprocessing by incorporating variance-stabilizing
transformations (Log1p, Box-Cox, Yeo-Johnson),
nonlinear scaling for heavy-tailed distributions
(square root transformations) and temporal dif-
ferencing for trend/seasonality removal. We are
experimenting with PatchTST (Nie et al., 2022)
because it is considered SOTA, and new models
consistently treat PatchTST as their benchmark for
comparison.

Our experimental framework contributions

are in threefold:

1. Enhanced Transformers: We introduce a pio-
neering approach that integrates statistical trans-
formations such as variance stabilization, skew-
ness correction, and stationarity enhancement
with the SOTA PatchTST transformer architec-
ture. To our knowledge, this is the first study
to combine these preprocessing techniques with a
transformer model. Our experiments demonstrate
significant improvements in forecasting accuracy,
with error scores reduced by 38% for the single
variable forecast and 24% when forecasting all
variables.

2. Optimized Data Preparation: By applying
techniques such as logarithmic, Box-Cox, and
Yeo-Johnson transformations along with differ-
encing methods, the framework tackles com-
mon challenges in time series data such as het-
eroscedasticity, skewed distributions, and non-
stationarity. Despite their proven effectiveness in
traditional statistical analysis, such methods have
been largely overlooked in deep learning. This ro-
bust preprocessing improves the intrinsic statisti-
cal properties of the data.

3. Simple yet powerful: Our findings show that sta-
tistical preprocessing of the input data can serve
as a simple yet powerful alternative to complex
architectural modifications, such as those used in
FEDformer (Zhou et al., 2021) and Autoformer
(Wu et al., 2021) models.

2 RELATED WORK

This section reviews the literature on data preprocess-
ing techniques, covering both statistical transforma-
tions and conventional data preprocessing approaches
in machine learning models.

2.1 Statistical Transformations

For the model to learn meaningful patterns with-
out being misled by variance instability of distribu-
tional shift, transforming time series data is crucial.
The study by (Salles et al., 2019) talks about differ-
ent transformation methods, e.g., Logarithmic Trans-
form, Box-Cox Transform, Differencing, etc., applied
to the ARIMA model. The results highlight the im-
portance of selecting the appropriate transformation
method based on the dataset’s characteristics. Experi-
ments show that although the transformation methods
consistently improved prediction and stationarity, no
single method was universally best.



Logarithmic transformations play an important
role in the field of economic forecasting. The authors
of the study (Lütkepohl and Xu, 2012), demonstrate
that these transformations stabilize variance, improv-
ing ARIMA-based forecasts. Similarly, (Proietti and
Luetkepohl, 2011) provides evidence that Box-Cox
transformations enhance predictive performance in
macroeconomic datasets. Nevertheless, these stud-
ies also warn against inappropriate usage, as trans-
formations can introduce distortions when applied to
already stable datasets. In addition, Douglas Curran-
Everett (Curran-Everett, 2018) highlights the impor-
tance of validating transformations using the Box-
Cox method.

2.2 Data Preprocessing in Deep
Learning

Traditional time series models such as SARIMA and
ETS have long utilized transformations like differenc-
ing to remove trends and achieve stationarity, which is
also shown by(Perone, 2022). However, deep learn-
ing models often overlook such preprocessing steps,
relying on simple normalization techniques such as
StandardScaler or MinMaxScaler. The studies by (de
Amorim et al., 2023), (Raju et al., 2020), and (Ahsan
et al., 2021) highlight the uses of these normalization
techniques and display improved results in their re-
spective domains.

The study by (Ozsahin et al., 2022) has thoroughly
investigated the effects of normalization, standardiza-
tion, and no scaling in five machine learning mod-
els, namely K-Nearest Neighbors (K-NN), Bernoulli
Naive Bayes (BNB), Decision Tree(DT), Logistic Re-
gression(LR), and Support Vector Machine(SVM) for
diabetes diagnosis. The findings reveal that the choice
of scaling model has a substantial effect on model ac-
curacy, which indeed emphasizes the need for care-
fully selecting the preprocessing techniques in med-
ical diagnostics. Recent SOTA transformer models
like (Nie et al., 2022) and (Zhou et al., 2021) also use
StandardScaler for preprocessing.

A recent study by (Bandara et al., 2020) demon-
strates that incorporating Box-Cox transformations
into Neural Networks substantially enhances fore-
casting accuracy for non-stationary retail sales data.
Our work proposes an approach that investigates
multiple transformations to enhance the channel-
independent PatchTST (Nie et al., 2022) across the
Influenza dataset.

3 TRANSFORMATIONS

The preprocessing methods utilized in this paper are
outlined below.

3.1 StandardScaler

StandardScaler is one of the most widely used scal-
ing techniques in machine learning. It transforms
each feature by subtracting its mean and dividing by
its standard deviation, effectively centering the data
around zero with a unit variance. In mathematical
terms, for each value y, the transformation is given
by:

yscaled =
y−µ

σ
(1)

where y is the original value, µ is the mean, and
σ is the standard deviation of the feature. The result,
yscaled, is the standardized value. The mean and stan-
dard deviation are obtained from only the training set
instead of the entire dataset to avoid data leakage dur-
ing training (Kuhn and Johnson, 2019).

However, this method assumes that the data fol-
lows a roughly normal (Gaussian) distribution. If the
data deviates from normality or contains significant
outliers, standardization might not produce reliable
results (Pedregosa et al., 2011). Inverse scaling is ob-
tained by adding the mean back and multiplying by
standard deviation.

3.2 Log1p

The log1p function adds one to each value and then
takes the natural logarithm of the result. In other
words, for a given number y,

log1p(y) = ln(1+ y) (2)

This approach is beneficial for values close to zero be-
cause adding one helps avoid numerical problems that
can arise when directly applying the natural logarithm
to very small or negative numbers. If you pass in real
(i.e., non-complex) numbers to the function, it always
tries to return a real result. However, if (1+ y) is not
a real number or infinity, log1p outputs NaN (not a
number) (Harris et al., 2020).

For the inverse transformation of log1p, we use
expm1, which calculates ey − 1. This function re-
verses the effect of log1p, meaning that if you apply
log1p to a number and then use expm1 on the result,
you get the original number.

3.3 Square Root

Another way to handle skewed data is the power
transformation, Square Root, where you simply take



the square root of the variable y (Miller, 1976). Like
the logarithmic transformation, this also helps shrink
large values and makes the distribution more symmet-
ric. To reverse the transformation, you take the square
of the transformed values to get the original scale.
Unlike log transformation, square root transformation
can handle zeros but not negative values.

3.4 Box-Cox

The Box-Cox transformation, a combination of both
logarithm and power transformation, was proposed by
George Box and David Cox (Box and Cox, 1964). It
is used to stabilize variance, reduce skewness in the
data, and achieve normality when desired. The Box-
Cox transformation is defined as:

ytrans =

yλ−1
λ

if λ ̸= 0,

logy if λ = 0.
(3)

where y is the input variable and λ is the transforma-
tion parameter. An optimal parameter λ is learned
from the input data, which determines the specific
power function applied to y; for example, λ = 1 gives
the original value, λ = -1 gives the reciprocal trans-
formation and λ = 2 corresponds to a square transfor-
mation. The log transformation is applied when λ is
equal to zero. The optimal parameter λ is chosen via
the maximum likelihood estimation.

The inverse of the Box-cox transformation is de-
fined as follows (Pedregosa et al., 2011):

y =


exp(ytrans) if λ = 0,

(ytransλ+1)
1
λ if λ ̸= 0.

(4)

where ytrans is the transformed variable. To obtain the
original data, the inverse transformation is applied us-
ing the fitted lambdas. It is important to note that the
Box-Cox transformation can only be applied when all
data values are positive. If your data includes nega-
tive values, you can either add a constant to shift the
distribution into the positive range or opt for the Yeo-
Johnson transformation, which accommodates nega-
tive values.

3.5 Yeo-Johnson

The Yeo-Johnson transformation, introduced by Yeo
and Johnson (Yeo and Johnson, 2000), is an extension

of the Box-Cox transformation. It is defined as:

ytrans =



(y+1)λ−1
λ

if y≥ 0 and λ ̸= 0,

log(y+1) if y≥ 0 and λ = 0,

− (−y+1)2−λ−1
2−λ

if y < 0 and λ ̸= 2,

− log(−y+1) if y < 0,λ = 2.
(5)

Here, y is the input variable and λ is the transfor-
mation parameter. This transformation can be ap-
plied without any restrictions on y, which means
that it is designed for variables that include zeros,
negatives, and positive values. For positive values,
the Yeo-Johnson transformation functions similarly to
the Box-Cox transformation but is applied to y+ 1.
This shift ensures that the transformation is well-
defined (since logarithms require positive arguments)
and helps in handling zeros. When the values are
strictly negative, it is also equivalent to Box-Cox but
this time it is applied to −y+1 with a power of 2−λ.
If the data has positive and negative values, it com-
bines the two approaches by using different powers
for the positive and negative parts of the data (Weis-
berg, 2001).

3.6 Differencing

Transformations like logarithms can help make the
variance of a time series more stable. Differencing,
on the other hand, helps stabilize the mean by remov-
ing shifts in the data over time. This can reduce or
even eliminate trends and seasonal patterns, making
the non-stationary time series stationary (Hyndman,
2018). In this paper, we explore two different types
of differencing techniques: First, and Seasonal. Al-
gorithm 1 shows the differencing function.

3.6.1 First Differencing

For First differencing, compute the difference be-
tween consecutive time steps by subtracting each
previous time step from the current one (Hyndman,
2018). For reverse differencing, combine the initial
seed value from the original input with the predicted
differences and perform a cumulative sum to rebuild
the original series, dropping the seed afterward.

3.6.2 Seasonal Differencing

For Seasonal differencing, subtract each data point
from the data point that is a fixed number of time
steps (defined by seasonal in the algorithm) behind
it (Hyndman, 2018). For reverse differencing, com-
bine the seasonal seed values with the predictions



Input: data: Tensor with dimensions
[batch size,sequence length, f eatures]

di f f order: A string indicating the
differencing order (”First”, ”Seasonal”)
seasonal: (Optional) An integer for the
seasonal lag (used if di f f order is
”Seasonal”)
Output: di f f erenced data: Transformed

data with differencing applied
Function
DIFFERENCING(data, di f f order, seasonal):

if di f f order equals “First” then
di f f erenced data← data[:,1 : end, :
]−data[:,0 : end−1, :]

else if di f f order equals “Seasonal” then
di f f erenced data← data[:
,seasonal : end, :]−data[:,0 :
end− seasonal, :]

end
return di f f erenced data
Algorithm 1: Differencing Function

and add back the value from the corresponding previ-
ous season at each step, finally removing the seasonal
seeds to reconstruct the original series.

4 EXPERIMENTS

4.1 Data and Code

Influenza-like illness (ILI)1 dataset is collected from
the Centers for Disease Control and Prevention
(CDC) from 1st October 2002 to 30th June 2020,
has the ILI patients data recorded every week for the
United States. The data2 consists of 966 samples
and seven variables such as weighted and unweighted
ILI cases, data by age group, number of providers,
and total number of affected patients. The up-
dated PatchTST code, which incorporates the above
mentioned preprocessing techniques, is available on
GitHub3.

4.2 Evaluation

To evaluate the model, we use two main metrics: the
symmetric mean absolute percentage error (sMAPE),

1https://gis.cdc.gov/grasp/fluview/fluportaldashboard.
html

2https://github.com/scalation/data/blob/master/
Influenza/national illness.csv

3https://github.com/scalation/scalation py/tree/dev sr/
Transformations

and the mean absolute error (MAE). sMAPE mea-
sures the absolute difference between the actual and
forecasted values normalized by absolute values of
both (Miller, 1976). The sMAPE is a bounded metric
where 0% indicates that the forecast is perfect, with
no discrepancies between predicted and actual values,
whereas a value of 200% implies that the predictions
are completely off, with the forecasted values having
opposite signs to the true values (Chicco et al., 2021).
The sMAPE is calculated using equation 6

sMAPE =
200

n

n

∑
t=1

|yt − ŷt |
|yt |+ |ŷt |

(6)

where yt is the true value, and ŷt is the forecasted
value.

MAE measures the mean of the absolute differ-
ences between the predicted values and the actual val-
ues. The MAE is an unbounded metric, and it is cal-
culated using equation 7

MAE =
1
n

n

∑
t=1
|yt − ŷt | (7)

where yt is the true value, and ŷt is the forecasted
value.

4.3 Implementation Details

4.3.1 PatchTST

We selected the SOTA channel-independent trans-
former model, PatchTST (Nie et al., 2022), and im-
plemented it using the original code provided in the
paper to replicate the reported results. The code is
available on their GitHub4, and we used the exact
hyperparameters specified in the Illness script5. For
the ILI dataset, we adopted prediction lengths {24,
36, 48, 60}, as in the original study, and addition-
ally experimented with prediction lengths of 6 and 12.
We obtained results that closely align with those re-
ported in the paper (details in Section 5) and applied
the StandardScaler inverse trans f orm method from
the Scikit-Learn library to revert the transformations,
ensuring an accurate comparison with the statistical
transformation. Please note that the results reported in
PatchTST (Nie et al., 2022) were generated by drop-
ping the last test samples that did not meet the batch
size (i.e., with drop last set to True). In contrast,
while reproducing these results under the same ex-
perimental conditions, we set drop last to False and
present our results.

4https://github.com/yuqinie98/PatchTST/tree/main/
PatchTST supervised

5https://github.com/yuqinie98/PatchTST/blob/main/
PatchTST supervised/scripts/PatchTST/illness.sh

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://github.com/scalation/data/blob/master/Influenza/national_illness.csv
https://github.com/scalation/data/blob/master/Influenza/national_illness.csv
https://github.com/scalation/scalation_py/tree/dev_sr/Transformations
https://github.com/scalation/scalation_py/tree/dev_sr/Transformations
https://github.com/yuqinie98/PatchTST/tree/main/PatchTST_supervised
https://github.com/yuqinie98/PatchTST/tree/main/PatchTST_supervised
https://github.com/yuqinie98/PatchTST/blob/main/PatchTST_supervised/scripts/PatchTST/illness.sh
https://github.com/yuqinie98/PatchTST/blob/main/PatchTST_supervised/scripts/PatchTST/illness.sh


The NumPy library is used to implement transfor-
mations such as Log1p, Square Root, and Differenc-
ing, whereas the Box-Cox and Yeo-Johnson transfor-
mations are carried out using Scikit-Learn’s Power-
Transformer. This PowerTransformer leverages Max-
imum Likelihood Estimation (MLE) as its estimator
and utilizes Brent’s method for optimization. The
seven lambda (λ) values for seven ILI features are
[-0.28602651, -0.503773, 0.29751579, 0.14257209,
0.19154931, 1.18640383, 0.8973477] using Box-
Cox and [-1.05905535, -1.35406619, 0.29698175,
0.14196202, 0.1913529, 1.18688668, 0.89734852]
using Yeo-Johnson. The seasonal differencing func-
tion is adapted from (Nau, 2016; Hyndman, 2018).
The ILI dataset exhibits a yearly pattern, we exper-
imented with 13, 26, and 52 samples, and 26 as a
seasonal parameter outperformed the others. In our
study, we computed the sMAPE exclusively to eval-
uate the performance of the single target variable
ILITOTAL, while the MAE was used to assess the
overall performance of all seven variables as in the
PatchTST paper.

We conducted a brief experiment using the ETTh1
dataset. Since the dataset contains negative values, we
were limited to applying only the Yeo-Johnson trans-
formation. For further details, please refer to Section
5.

4.3.2 SARIMA

We adopted the SARIMA (Box et al., 2015) model
as our baseline. The optimized hyperparameters
(p,d,q)X(P,D,Q)m as (3,1,3)X(3,0,1)13 are derived
from (Rana et al., 2024). When applying other trans-
formations, we set the differencing parameter (d) to
zero. For first differencing, we assign d = 1. For sea-
sonal differencing, we initialize D = 1. All other im-
plementation details remain the same as in PatchTST.

4.4 Results Analysis

Table 1 presents the performance results for various
data transformation techniques. The table reports the
MAEs for all variables collectively, while the sMAPE
is provided for the target variable ILITOTAL.

PatchTST leads SARIMA in most of the tech-
niques for a single target variable. Among the tested
methods, log1p, Box-Cox, Yeo-Johnson, and square
root transformations outperform the baseline Stan-
dardScaler for the single target variable (ILITOTAL).

Logarithmic transformations are widely recog-
nized for reducing right skewness in datasets (Galli,
2024; Feng et al., 2013; Yeo and Johnson, 2000).
They mitigate the impact of outliers by compress-
ing the scale of large values, thereby making the

distribution more symmetric. As shown in the his-
tograms in Figure 1, most features, including Feature
5 (ILITOTAL), are right-skewed. Applying the log1p,
Box-Cox, Yeo-Johnson, and square root transforma-
tions adjusts these right-skewed distributions, bring-
ing them closer to a normal distribution.

It is important to note that logarithmic transfor-
mations do not always reduce skewness; in cases
where the data is already normally distributed, they
may even introduce additional skewness (Feng et al.,
2014). Note that for features 6 and 7, which were
not right skewed originally, the transformation did
not improve the distribution. However, for the other
features, particularly for ILITOTAL (Feature 5), all
four transformations clearly reduce skewness, as il-
lustrated in the figures. Box-Cox and Yeo-Johnson
transformations made the features appear more nor-
mally distributed by automatically selecting the opti-
mal power (lambda) parameter.

In contrast, StandardScaler assumes that the data
follows a normal distribution and only scales the data,
without altering its shape. As demonstrated in Figure
1b, although the data is rescaled, the original distribu-
tion remains unchanged. This behavior may explain
why StandardScaler performs poorly when the under-
lying data deviates from normality and fails to miti-
gate the impact of outliers.

Figures 2a and 2b present the ground truth along-
side 24-day-ahead forecasts for the target variable
ILITOTAL using StandardScaler and log1p transfor-
mations, respectively. The log1p transformation ef-
fectively captures the peaks and troughs in the data,
whereas StandardScaler does not represent these fluc-
tuations as accurately.

Finally, among the power and log transformations,
the best results for ILITOTAL are achieved using
the log1p and square root transformations. Among
these, logarithmic transformations are more inter-
pretable because changes in the logarithmic scale di-
rectly reflect relative (or percentage) changes in the
original data (Hyndman, 2018). The primary objec-
tive of these transformations is to make the variations
in the time series more homogeneous. Our dataset ex-
hibits fluctuating magnitudes—small at certain points
and larger at others. This means that the data shows
structural breaks, which lead to differing mean lev-
els across segments and considerable variance. These
structural breaks can be identified by comparing the
means of different segments (Salles et al., 2019). We
aim to stabilize the data across its entire range by ap-
plying these transformations. Figures 3a and 3b illus-
trate that the high fluctuations are notably diminished
in the logarithmically transformed series compared to
the square root method. The log1p approach effec-



(a) Without any transformation (b) StandardScaler

(c) Log1p (d) Square Root

(e) Box-Cox (f) Yeo-Johnson

Figure 1: Histograms illustrating the effects of different data transformation techniques on the ILI dataset of 7 features. These
plots reveal how each transformation alters the distribution, affecting skewness and dispersion.



Table 1: The sMAPE and MAE results for the transformations using the ILI weekly dataset. Among SARIMA and PatchTST,
the best results are highlighted in red. For the comparison of transformations within PatchTST, the best results are shown in
bold, while the second-best results are underlined. Here, Log1p + First Diff. refers to the combination of Log1p transfor-
mation with first differencing, whereas Log1p + S.Diff. represents the combination of Log1p transformation with seasonal
differencing.

StandardScaler Log1p Square Root Box-Cox Yeo-Johnson First Diff. Seasonal Diff. Log1p + First Diff. Log1p+S.Diff
Week SARIMA PatchTST SARIMA PatchTST SARIMA PatchTST SARIMA PatchTST SARIMA PatchTST SARIMA PatchTST SARIMA PatchTST SARIMA PatchTST SARIMA PatchTST

sMAPEs - ILITOTAL
6 31.92 35.40 22.63 23.84 23.54 27.06 24.27 23.56 23.97 23.77 24.63 34.37 26.56 51.69 19.00 17.25 19.89 26.17
12 48.81 49.40 37.52 31.28 39.96 31.87 39.50 35.06 38.58 35.28 38.14 46.20 38.50 57.95 27.69 25.94 30.29 30.53
24 65.14 46.71 54.94 31.00 59.39 29.72 57.60 36.08 55.64 35.22 49.45 58.26 46.36 54.02 34.37 34.63 39.01 31.34
36 61.92 47.97 61.11 31.06 66.32 30.14 63.00 32.51 60.94 31.57 51.81 67.72 48.63 52.78 36.38 33.64 41.15 32.23
48 59.54 58.11 59.83 24.32 67.83 28.20 63.01 29.40 61.38 30.43 52.71 69.51 49.86 56.94 37.53 32.40 42.16 27.97
60 58.67 38.75 58.47 27.70 73.13 31.96 64.29 34.32 63.34 33.52 53.44 63.97 50.86 52.37 39.28 32.29 43.50 29.65

Avg 54.33 46.05 49.08 28.20 55.02 29.82 51.94 31.82 50.64 31.63 45.03 56.67 43.46 54.29 32.37 29.35 36.00 29.64
MAEs - All variables

6 16844.74 16839.83 14056.24 19881.51 14454.47 15818.69 15924.42 15104.86 15876.90 15267.16 14215.94 12693.62 13801.11 16969.63 13868.02 13736.18 13682.41 19233.16
12 24082.89 22629.97 19918.28 23602.77 20729.71 20537.00 22701.11 19485.43 22622.50 20261.13 19673.40 17378.38 17470.73 21997.68 19245.43 18402.62 16861.64 22675.73
24 31469.72 29072.70 26134.05 29559.48 27453.10 25617.46 29617.99 25305.86 29498.33 26222.96 25025.35 21269.48 20724.31 22697.83 24722.42 22994.84 19925.57 28495.22
36 34538.67 29322.07 27712.96 32954.31 29260.57 27244.28 32580.43 30362.54 32436.79 30212.62 26430.90 24432.68 21964.31 20395.40 26060.21 26615.64 21164.80 25096.66
48 36247.89 33369.20 27051.30 29512.84 30020.48 30600.16 34230.99 28597.62 34090.00 30909.66 25810.38 25000.00 22623.02 20836.90 25601.89 25344.86 21788.76 24309.00
60 38046.28 31820.30 26644.67 34074.13 31415.01 26688.68 35998.75 32260.86 35871.03 32150.22 25369.91 22462.34 23278.89 19759.23 25379.16 24491.31 22315.92 23335.12

Avg 30205.03 27175.67 23586.25 28264.17 25555.55 24417.71 28508.94 25186.19 28399.25 25837.29 22754.31 20539.41 19977.06 20442.77 22479.52 21930.90 19289.85 23857.48

(a) StandardScaler

(b) Log1p
Figure 2: The above plots compare the ground truth IL-
ITOTAL values with 24-weeks ahead forecasts obtained
through transformations, capturing the data’s peaks and
troughs.

tively lowers the variance, while the mean becomes
nearly constant at the later stage, though not entirely
stabilized. Although the square root transformation
moderates the fluctuations somewhat, significant vari-
ability remains. In contrast, the logarithmic transfor-
mation yields a series of more consistent fluctuations
throughout which simplifies the modeling process.

Figure 4 compares the plots of the first-differenced
series with and without the log1p transformation. Al-
though both series oscillate around zero, their vari-

ance behaviors differ significantly. In particular, the
log1p-differenced series performs better than the se-
ries that has been only differenced—a finding that is
also supported by (Lütkepohl and Xu, 2012; Hossain
et al., 2019). The log1p-differenced ILITOTAL se-
ries exhibits considerable variance in the early years,
which then stabilizes during the middle and later pe-
riods, as shown in the plots and confirmed using
np.var(). In contrast, the series that underwent only
differencing shows a trend of increasing variance over
time. We conducted Levene’s test (Virtanen et al.,
2020) on both series, and according to the p-values
reported in Table 2, the null hypothesis of equal
variances across segments is rejected for both trans-
formations. However, the log1p-differenced series
displays reduced heteroscedasticity in the later seg-
ments (p≈ 0.000014), while the only differenced se-
ries exhibits even greater variance inconsistency (p≈
1.40×10−15). Although neither method achieves per-
fect homoscedasticity, log1p-differencing offers su-
perior variance stabilization, making it a more ef-
fective transformation for achieving uniform variance
over time. That said, additional preprocessing may
still be required to fully normalize the variance, par-
ticularly in the early data.

In our analysis of MAEs across all variables,
PatchTST outperforms SARIMA on five techniques
and exceeds StandardScaler on almost all techniques.
The stationarity tests from Statsmodels (Seabold
and Perktold, 2010) - the Augmented Dickey-Fuller
(ADF) and the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) - indicate that ILI features 1 and 2 are station-
ary, while features 6 and 7 are non-stationary and fea-
tures 3, 4, and 5 are difference stationary (according
to case 46). The respective p-values and null hypothe-
sis are provided in Table 2. The difference stationary
or non-stationarity in a series indicates the presence of

6https://www.statsmodels.org/dev/examples/
notebooks/generated/stationarity detrending adf kpss.html

https://www.statsmodels.org/dev/examples/notebooks/generated/stationarity_detrending_adf_kpss.html
https://www.statsmodels.org/dev/examples/notebooks/generated/stationarity_detrending_adf_kpss.html


(a) Log1p vs Original

(b) Square Root vs Original
Figure 3: The above plots display the transformed ILI-
TOTAL series alongside the original data, allowing you to
compare the variations before and after the transformations.

a unit root in a series, which can be removed by differ-
encing (Salles et al., 2019). Almost all series show a
clear seasonal pattern. By applying first differencing
to eliminate the unit root and seasonal differencing
to remove the seasonal effects, we successfully trans-
form the series into stationary ones (Hyndman, 2018)
as shown in Table 2. As a result, the forecast perfor-
mance improves significantly, resulting in the best re-
sults when these differencing methods are employed.
Additionally, logarithmic and power transformations
also produce better results than StandardScaler due to
their ability to stabilize the series.

Figure 4: In the figure above, the top plot shows the ILITO-
TAL series after applying both a log1p transformation and
first differencing, while the bottom plot shows the series af-
ter applying only first differencing.

Table 2: The table presents the results of the ADF, KPSS,
and Levene’s tests. For the ADF test, the null hypothe-
sis is that the series contains a unit root, implying non-
stationarity. In contrast, the KPSS test’s null hypothesis is
that the process is stationary. Similarly, Levene’s test oper-
ates under the null hypothesis that all input samples come
from populations with equal variances.

KPSS ADF
Original Data

p-value Null Hypothesis p-value Null Hypothesis
Feature 1 (% WEIGHTED ILI) 0.1 stationary 5.7510×10−12 Rejected/stationary

Feature 2 (% UNWEIGHTED ILI) 0.1 stationary 1.0285×10−11 Rejected/stationary
Feature 3 (AGE 0-4) 0.01 Rejected/non-stationary 1.1239×10−8 Rejected/stationary

Feature 4 (AGE 5-24) 0.01 Rejected/non-stationary 2.2039×10−8 Rejected/stationary
Feature 5 (ILITOTAL) 0.01 Rejected/non-stationary 7.1639×10−8 Rejected/stationary

Feature 6 (NUM. OF PROVIDERS) 0.01 Rejected/non-stationary 0.4243 non-stationary
Feature 7 (OT) 0.01 Rejected/non-stationary 0.7598 non-stationary

First Differencing
p-value Null Hypothesis p-value Null Hypothesis

Feature 1 (% WEIGHTED ILI) 0.1 stationary 1.2414×10−20 Rejected/stationary
Feature 2 (% UNWEIGHTED ILI) 0.1 stationary 3.0196×10−21 Rejected/stationary

Feature 3 (AGE 0-4) 0.1 stationary 1.2410×10−14 Rejected/stationary
Feature 4 (AGE 5-24) 0.1 stationary 5.7794×10−14 Rejected/stationary
Feature 5 (ILITOTAL) 0.1 stationary 8.6532×10−14 Rejected/stationary

Feature 6 (NUM. OF PROVIDERS) 0.1 stationary 6.3667×10−15 Rejected/stationary
Feature 7 (OT) 0.1 stationary 5.3756×10−15 Rejected/stationary

Seasonal Differencing
p-value Null Hypothesis p-value Null Hypothesis

Feature 1 (% WEIGHTED ILI) 0.1 stationary 1.7049 ×10−24 Rejected/stationary
Feature 2 (% UNWEIGHTED ILI) 0.1 stationary 5.3655 ×10−25 Rejected/stationary

Feature 3 (AGE 0-4) 0.1 stationary 2.0115 ×10−19 Rejected/stationary
Feature 4 (AGE 5-24) 0.1 stationary 5.6644 ×10−25 Rejected/stationary
Feature 5 (ILITOTAL) 0.1 stationary 1.1578 ×10−24 Rejected/stationary

Feature 6 (NUM. OF PROVIDERS) 0.1 stationary 3.7319 ×10−28 Rejected/stationary
Feature 7 (OT) 0.1 stationary 1.1596 ×10−24 Rejected/stationary

Levene’s Test
Log1p + Differencing Only Differencing

p-value Null Hypothesis p-value Null Hypothesis
Feature 5 (ILITOTAL) 0.000014 Rejected/unequal variance 1.40×10−15 Rejected/unequal variance

4.4.1 Optimized Hyperparameters

In our work, the SARIMA hyperparameters used
were optimized, whereas the original PatchTST pa-
per did not optimize its hyperparameters. This differ-
ence contributes to SARIMA’s superior performance
in some cases. (Rana et al., 2024) conducted a com-
prehensive hyperparameter optimization and found
that a shorter look-back window can be advantageous
for short-term forecasting since predicting the near
future requires less historical data. Consequently,
PatchTST tends to perform worse than SARIMA for
short forecasting horizons; however, its performance
improves for longer horizons, likely because it lever-



Table 3: The table below displays the sMAPE and MAE
metrics for both PatchTST and its optimized version,
oPatchTST, derived from fine-tuned hyperparameters.

Log1p Log1p + S.Diff. Square Root
Week PatchTST oPatchTST PatchTST oPatchTST PatchTST oPatchTST

sMAPEs - ILITOTAL
6 23.84 19.54 26.17 23.36 27.06 20.78
12 31.28 26.27 30.53 28.85 31.87 25.30
24 31.00 28.25 31.34 28.34 29.72 28.21
36 31.06 25.57 32.23 28.30 30.14 29.81
48 24.32 23.11 27.97 27.97 28.20 26.18
60 27.70 24.28 29.65 27.47 31.96 27.17

Avg 28.20 24.50 29.64 27.38 29.82 26.24
MAEs - All variables

6 19881.51 15985.25 19233.16 17410.22 15818.69 13579.23
12 23602.77 21621.27 22675.73 21733.49 20537.00 18814.69
24 29559.48 26018.47 28495.22 26927.14 25617.46 23077.38
36 32954.31 29162.06 25096.66 24974.86 27244.28 23301.66
48 29512.84 32294.95 24309.00 24309.00 30600.16 24952.17
60 34074.13 30842.34 23335.12 24146.60 26688.68 26210.98

Avg 28264.17 25987.39 23857.48 23250.21 24417.71 21656.01

Table 4: This table presents the optimized hyperparame-
ter settings for PatchTST based on the techniques applied.
Abbreviations used are as follows: Learning Rate (LR), Se-
quence Length (SL), Encoder Layers (eL), and Model Di-
mensions (Mdim).

6 12 24 36 48 60
LR 0.0001 0.0001 0.0001 0.0001 0.0025 0.0025

Log1p SL 60 60 104 104 104 104
eL 2 2 4 4 4 4

Mdim 16 16 16 16 16 16
LR 0.0025 0.0001 0.0025 0.0025 0.0025 0.0025

Log1p + SL 70 104 60 60 104 60
Seasonal Diff. eL 5 4 2 2 3 3

Mdim 64 64 16 16 16 16
LR 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Square Root SL 80 60 70 104 90 80
eL 3 2 6 2 2 3

Mdim 32 32 16 16 32 16

ages up to 104 past values, which is more appropriate
for longer horizons. We optimized the hyperparam-
eters for some of the best-performing techniques to
illustrate how performance generally improves when
these parameters are fine-tuned. The results are pre-
sented in Table 3 and the optimized hyperparame-
ters are listed in Table 4. All other hyperparame-
ters remain unchanged, though further optimization
of other hyperparameters could potentially improve
the results.

5 CONCLUSIONS AND FUTURE
WORK

In this work, we have presented an enhanced channel-
independent transformer, PatchTST, for time series
forecasting by incorporating statistical preprocess-
ing techniques. Our approach integrates variance-
stabilizing transformations (such as Log1p, Box-Cox,
and Yeo-Johnson), non-linear scaling methods (using
the square root transformation), and temporal differ-
encing to tackle non-stationarity, skewness, and het-
eroscedasticity in real-world data.

Experimental evaluations on the benchmark

dataset demonstrate that our preprocessing strategies,
including logarithmic transformations and differenc-
ing significantly improve forecasting accuracy com-
pared to traditional normalization method. In partic-
ular, we observe a 38% improvement in sMAPE for
the single target variable and a 24% in MAE for all
variables. Moreover, the enhanced PatchTST model
robustly captures complex temporal patterns while re-
ducing the impact of outliers and structural breaks.

In conclusion, our innovative approach success-
fully reduces skewness, lowers variance, and en-
hances the stationarity of the dataset, resulting in
more reliable forecasts. For future work, we will
explore additional techniques to achieve full ho-
moscedasticity. In addition, we plan to experiment on
more diverse datasets and investigate models that in-
corporate channel mixing, aiming to understand their
effects on capturing temporal dependencies.
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APPENDIX

Reproducing Results: We executed the PatchTST
code using the Illness, Weather, and ETTh1 scripts7

and successfully replicated the exact results for the
Weather and ETTh1 datasets, while obtaining closely
matching results for the Illness dataset. Table 5
presents the results reported in the original paper (Nie
et al., 2022) alongside our findings obtained with
drop last set to both True and False. Note the dif-
ference in the number of samples for both condi-
tions. In this paper, we present the StandardScaler
inverse-transformed results obtained with drop last
set to False.
Table 5: The table displays the sample counts for drop last
set to True (DL: T) and False (DL: F), along with the MAE
results reported in the original paper (Nie et al., 2022) and
our reproduced outcomes for both conditions using Stan-
dardScaler.

Weeks Samples - DL: T PatchTST Ours Samples - DL: F Ours
24 160 0.814 0.734 170 0.913
36 144 0.834 0.898 158 0.890
48 144 0.854 0.879 146 0.916
60 128 0.862 0.790 134 0.875

Average - 0.841 0.825 - 0.898

ETTh1 Dataset: In this study, we experimented
with the ETTh1 dataset—one of the ETT datasets
(Zhou et al., 2021)—which comprises 17,420 sam-
ples across 7 features and is available on the ETT
GitHub repository8. Given the presence of negative
values in the dataset, we applied the Yeo-Johnson
transformation, which can effectively handle such
data. Table 6 summarizes the MAE results using both
Yeo-Johnson and StandardScaler with inverse trans-
formation after replicating the PatchTST (Nie et al.,
2022) normalized results. We adopted prediction
lengths of 96,192,336,720, as in the PatchTST pa-
per. Notably, the results using the Yeo-Johnson trans-
formation outperform those using the StandardScaler
for all four horizons.
Table 6: The table presents the MAE results on the ETTh1
dataset after applying inverse transformation using the Stan-
dardScaler and Yeo-Johnson methods. The best-performing
outcomes are highlighted in bold.

Weeks Samples StandardScaler Yeo-Johnson
96 2785 1.488 1.450
192 2689 1.578 1.542
336 2545 1.669 1.605
720 2161 1.779 1.674

Average - 1.628 1.567

7https://github.com/yuqinie98/PatchTST/tree/main/
PatchTST supervised/scripts/PatchTST

8https://github.com/zhouhaoyi/ETDataset/tree/main

https://github.com/yuqinie98/PatchTST/tree/main/PatchTST_supervised/scripts/PatchTST
https://github.com/yuqinie98/PatchTST/tree/main/PatchTST_supervised/scripts/PatchTST
https://github.com/zhouhaoyi/ETDataset/tree/main

